Down-regulation of types I, II and III inositol 1,4,5-trisphosphate receptors is mediated by the ubiquitin/proteasome pathway.

نویسندگان

  • J Oberdorf
  • J M Webster
  • C C Zhu
  • S G Luo
  • R J Wojcikiewicz
چکیده

Activation of certain phosphoinositidase-C-linked cell-surface receptors is known to cause an acceleration of the proteolysis of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] receptors and, thus, lead to Ins(1,4,5)P3-receptor down-regulation. In the current study we have sought to determine whether the ubiquitin/proteasome pathway is involved in this adaptive response. The data presented show (i) that activation of phosphoinositidase-C-linked receptors causes Ins(1,4,5)P3-receptor ubiquitination in a range of cell types (AR4-2J cells, INS-1 cells and rat cerebellar granule cells), (ii) that the Ins(1,4,5)P3-receptor down-regulation induced by activation of these receptors is blocked by proteasome inhibitors, (iii) that all known Ins(1,4,5)P3 receptors (types I, II and III) are substrates for ubiquitination, (iv) that ubiquitination occurs while Ins(1,4,5)P3 receptors are membrane-bound, (v) that Ins(1,4, 5)P3-receptor ubiquitination and down-regulation are stimulated only by those agonists that elevate Ins(1,4,5)P3 concentration persistently, and (vi) that a portion of cellular Ins(1,4,5)P3 receptors (those that are not type-I-receptor-associated) can be resistant to ubiquitination and degradation. In total these data indicate that the ubiquitin/proteasome pathway mediates Ins(1,4, 5)P3-receptor down-regulation and suggest that ubiquitination is stimulated by the binding of Ins(1,4,5)P3 to its receptor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ligand binding directly stimulates ubiquitination of the inositol 1, 4,5-trisphosphate receptor.

Down-regulation of the Ins(1,4,5)P(3) receptor is an adaptive response to the activation of certain phosphoinositidase C-linked cell-surface receptors. It is manifested as a profound decline in cellular Ins(1,4,5)P(3) receptor content, occurs with a half-time of 0.5-2 h and is due to accelerated proteolysis. It has been shown that this process is mediated by the ubiquitin/proteasome pathway and...

متن کامل

RNF170 protein, an endoplasmic reticulum membrane ubiquitin ligase, mediates inositol 1,4,5-trisphosphate receptor ubiquitination and degradation.

Inositol 1,4,5-trisphosphate (IP(3)) receptors are endoplasmic reticulum membrane calcium channels that, upon activation, are degraded via the ubiquitin-proteasome pathway. While searching for novel mediators of IP(3) receptor processing, we discovered that RNF170, an uncharacterized RING domain-containing protein, associates rapidly with activated IP(3) receptors. RNF170 is predicted to have t...

متن کامل

Proteolysis of type I inositol 1,4,5-trisphosphate receptor in WB rat liver cells.

A comparison of the basal degradation of type I Ins P3Rs [L- myo -inositol 1,4,5-trisphosphate receptor], measured by pulse-chase analysis or by analysis of immunoreactive Ins P3Rs after cycloheximide addition, indicated that the small pool of newly synthesized radioactive Ins P3Rs degraded relatively rapidly compared with the large pool of mature Ins P3Rs. An antibody (Ab) against a peptide se...

متن کامل

The Stability and Expression Level of Bok Are Governed by Binding to Inositol 1,4,5-Trisphosphate Receptors.

Bok is a member of the Bcl-2 protein family that governs the intrinsic apoptosis pathway, although the role that Bok plays in this pathway is unclear. We have shown previously in cultured cell lines that Bok interacts strongly with inositol 1,4,5-trisphosphate receptors (IP3Rs), suggesting that it may contribute to the structural integrity or stability of IP3R tetramers. Here we report that Bok...

متن کامل

Activated inositol 1,4,5-trisphosphate receptors are modified by homogeneous Lys-48- and Lys-63-linked ubiquitin chains, but only Lys-48-linked chains are required for degradation.

Inositol 1,4,5-trisphosphate (IP(3)) receptors (IP(3)Rs) are large, ubiquitously expressed, endoplasmic reticulum membrane proteins that form tetrameric IP(3) and Ca(2+)-gated Ca(2+) channels. Endogenous IP(3)Rs provide very appealing tools for studying the ubiquitin-proteasome pathway in intact mammalian cells because, upon activation, they are rapidly ubiquitinated and degraded. Using mass sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 339 ( Pt 2)  شماره 

صفحات  -

تاریخ انتشار 1999